

Current state of water quality monitoring and lab facilities in Sri Lanka

Expected Needs and Challenges due to Tsunami

AM Mubarak-Director, ITI

Content

- Responsible Institutions for water resources
- Water quality monitoring
 - Surface water bodies
 - Groundwater
- Post tsunami studies
- Status of laboratory facilities
- Future directions

Protection & Management

- Water Resources Board (WRB)
 - Assessment, protection & development of water resources
- Water Supply & Drainage Board (WSDB)
 - Supply of water for drinking & industrial purposes
- Irrigation Department
 - Construction, maintenance, operation & maintenance of irrigation tanks, canals & schemes
- Mahaweli Authority
 - Management of Mahaweli river system/water resources

Protection & Management

MOE/Central Environmental Authority (CEA)

Responsible for water quality; discharge/ambient water quality std

Coast Conservation Dept (CCD)

Control/management of the coastal zone; 300 m landwards 2km seawards

Marine Pollution Prevention Authority (MPPA)

- Control of marine pollution

National Aquatic Resources Agency (NARA)

Overall management of aquatic resources- collect, disseminate data, conduct research etc,

Water quality monitoring

- No comprehensive water quality data
 - Diffused management responsibilities
 - No systematic monitoring
- Many independent studies
 - NARA, WRB, NWSDB, NBRO, IFS, ITI, MOE, CEA, Universities
 - But analysis difficult as data scattered, unpublished or in unprocessed form

Surface Water Quality

- Urban Lakes
- Major Rivers
- Estuaries & Lagoons

Water quality-urban lakes

- Beira Lake Restoration study-UDA 1993
- Comparison of Beira, Bolgoda, Kandy, Diyawanna Oya, and Labugama
 - Increased degradation with urbanisation
 - Proper planning/control necessary to maintain water quality

Impact of urbanisation

Indicator	Beira	Kandy	Bolgoda	Diyawanna	Labugama
Tot N, mg/l	13.8	3.6	5	4	<1
Tot P, mg/l	1.5	<0.001	<0.001	<0.001	<0.001
Chl, mg/l	0.28	0.002	<0.001	<0.001	<0.001
BOD, mg/l	46	3.3	5	1	<1

Kelani & Kalu Ganga

- Comprehensive monitoring -NARA 1994
- Catchment waters-good quality
 - Some agrochemical pollution from tea plantations
- Estuaries showed increased pollution with high BOD, TDS and salinity intrusion
- Presence of coliform throughout the river systemsimproper disposal of sewage
- Levels within freshwater norms for bathing and recreational use but not for drinking

Mahaweli river

- Mahaweli 'H' reservoirs (NARA 1992/93)
 - Mostly located in the Anuradhapura
 - Kandalama, Kalwewa, Rajanganya, Nuwaraweva, etc.,
 - Pollution from agrochemicals, urban centres and hotels
- No pesticides detected in the Kandy District (ITI-1994)
- Presence of Cyanobacteria in the Mahaweli River Basin (NWSDB-1994)

Estuaries and Lagoons

- 80,000 ha of estuaries and large deep lagoons
- 40,000 ha of shallow lagoons, tidal flats, mangroves & swamps
- No major lagoons except Jaffna, Batticaloa and Negombo are associated with urban centres
- No coastal towns are heavily industrialised
- Water quality in Kalametiya, Koggala satisfactory (NARA, 1993)
- Significant pollution in small lagoons and bay estuaries
 - Lunawa heavily polluted; Bolgoda gradually deteriorating
 - Valichchenai lagoon heavily polluted (NSF-1991)

Groundwater monitoring

Jaffna (DOA 1988) & Kalpitiya (ITI 1994)

high nitrate/chloride levels and salinity intrusion

Anuradhapura District (WRB-2000/'01)

- 94 agro-wells in 34 cascades monitored for 1 year
- 30% had EC values 1000-2000 $\mu s/cm;$ 10% >2000
- High EC may affect yields of sensitive crops

Trincomalee District (WRB 2000)

- 25 wells monitored for 1 year
- 50% had EC <1000 $\mu s/cm;$ 25%- 1000-1500; 25%- 1500-2500
- No build up of salinity is anticipated as Maha rain is sufficient to flush out salt built up during dry season

Kalpitiya -Chlorides in irrigated wells

Kalpitiya sandy aquifer

(ITI/DOA/BGS)

Kalpitiya – accumulation of Cl

Dug wells - Trincomalee

(WRB)

Dug wells - Batticaloa

Post tsunami studies

- Many domestic wells analysed after tsunami
 - Jaffna, Amparai, Batticaloa, Hambantota
- NWSDB, WRB, ITI, MOE/CEA/Morotuwa, Universities, NGOs
- Basic parameters -pH, EC, salinity, microbiological
- Some studies of sediment for toxic contaminants
- High salinity and coliform
- Little or no PCBs, heavy metals
- But no trend analysis

RAE -Brown environment

UOM/CEA/MOE; 750 sites were studied

- 26 sites studied for water sector
 - Galle, Matara, Hambantota, Ampara, Batticaloa, Trincomalee
 - Number of hot spots; High-16; Moderate-6; Low-2; Very low-2

Short-term

- Provision of safe potable water supply from existing mobile unit

Medium-term:

- Rehabilitation of water supply & sanitation in tourism sector

• Long-term:

- Provision of water supply through decentralised plants
- Establishment of EMP/Regional data collection centres

Impact of tsunami on water quality

- Jointly undertaken by ITI & UOP
- Funded by NSF; 1 year duration; July 2005
- Combined hydro geological, geophysical, hydro chemical surveys to
 - Estimate the extent of groundwater contamination
 - Map saline water plumes & their movements
 - Demarcate safe aquifer zones within the affected areas
 - Estimate the rate of natural retrieval of the saline water front
 - Thematic maps for each chemical parameter depicting safe/unsafe areas
 - Develop appropriate method to treat water for domestic use

Hikkaduwa Division

Tsunami_boundary_wells03 copy.JPG

Lab Facilities - Status

- Many labs have basic facilities
 - ITI, WRB, NWSDB, CEA, NARA, Universities
 - pH, EC, TDS, microbiological etc.,
- Some labs have facilities to test toxic contaminants
 - GC, HPLC, GC-MS for Pesticides, PCBs
 - Flame & GF AAS for toxic metals
- Only ITI is accredited for water testing for chemical (including pesticides & toxic metals) and microbiological parameters

ITI Laboratory

- ISO 17025 Accreditation
 - ASTEL (SLSI), SWEDAC (Sweden)
- State of the Art Facilities
 - Capillary GC/FID, ECD, NPD
 - GC-MS with EI, NCI & PCI
 - Purge & Trap and Thermal Desorber
 - HPLC/DAD & FD
 - TOC
 - AAS with Flame and Graphite furnace
 - Mobile laboratory

Future directions

- Policies to control groundwater use
- Deep groundwater explorations
- Rainwater harvesting
- Control of agro-wells in low rainfall areas
- Systematic groundwater monitoring in the coastal areas in the dry zones
- Establish systems to capture & generate data on quality and quantity of groundwater for planning, management and modeling etc.,
- Establish Database on groundwater for Public access

Thank you